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GAS MIGRATION MECHANISMS IN CLAYS
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𝑝! , 𝑝" : water and gas pressures in the REV
�̅�" : gas injection pressure
𝑝#$ : clay gas entry value

𝑓% : tensile strength
𝜎&, 𝜎' : principal stresses

Liaudat et al. (2023), 
adapted from 
Marschall et al. (2005)



FEM+Z MODELLING APPROACH (LIAUDAT ET AL., 2023)

1. Continuum elements with classical two-phase 
flow in porous media formulation

2. Explicit representation of gas cracking via 
zero-thickness interface elements (“+Z”) 
equipped with a  cohesive fracture constitutive 
model
• Interface elements are introduced a priori in 

between continuum elements as potential 
cracking paths

• Closed interface elements do not influence the 
overall response of modelled material
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PNEUMO-HYDRO-MECHANICAL INTERFACE (PHMI) ELEMENT (LIAUDAT ET AL., 2023)

3-node zero-thickness interface element
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Mechanical Governing equations
• Basic variables: 

• normal and tangential stress components on mid-
plane

• conjugate relative displacements  

Flow governing equations
• Two-phase flow 
• Diffusion-advection of dissolved gas
• Longitudinal and transversal flows
• Longitudinal transmissivity and diffusivity 

dependent on normal aperture



MECHANICAL CONSTITUTIVE FORMULATION

Crisfield’s cohesive zone model 

• Bilinear damage model

• Unique damage variable for shear and tension 
(coupled damage)

• No damage is produced by compression (negative) 
normal displacements.

• Normal stiffness in compression is affected by a 
penalty term to prevent significant overlapping in 
compression.

• Frictional effects are not accounted for (strictly 
valid only for a purely cohesive material)
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RETENTION CURVES

• For solid elements: 
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• For interface elements: 
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where 𝑛 and 𝑑 [m] are the porosity and the 
characteristic 
pore size of the continuum porous medium. 7

Solid line: retention curve for continuum medium and 
closed fractures

Dashed lines: retention curves for increasing fracture 
aperture

Markers: Experimental data (Boom Clay) from Gonzalez-
Blanco et al. (2016)



RELATIVE PERMEABILITY CURVES

• The same power laws are adopted for solid and 
interface elements:

𝑘!,) = 𝑆#
*! ; 𝑘",) = 1 − 𝑆# *"

where 𝑛! and 𝑛) are shape parameters, and 𝑆* is 
the effective saturation degree.

• For solid elements, 

𝑆# =
𝑆! − 𝑆!)
1 − 𝑆!)

• For interface elements,

𝑆# =
𝑆! − ̅𝑆!)
1 − ̅𝑆!)

with ̅𝑆!" 𝑟( =
𝑛𝑑

𝑛𝑑 + 𝑟(
𝑆!"
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Solid line: continuum medium and closed fractures
Dashed lines: fracture with large aperture
Markers: Experimental data (Boom Clay) from Volkaert et al. 

(1995)
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MODELLING RESULTS
1D gas injection under isochoric conditions
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MODEL GEOMETRY AND FE MESH
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Very stiff, impervious loading plates

Bottom contact
Lateral contact
Top contact
Potential fracture path

24 mm

24
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Boom clay sample (linear elastic)



INITIAL AND BOUNDARY CONDITIONS
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Initial conditions
Isotropic initial stress state: 𝜎+ = 𝜎, = 4.5 MPa
Initial pore pressure 𝑝) = 𝑝! = 2.2 MPa (𝑆! = 1)

Boundary conditions
Isochoric conditions
Gas and water pressure fixed at the top contact 
Gas injection at the bottom contact (𝑓) = 1.0×10&- kg/s)



EFFECT OF THE GAS INJECTION RATE: Time evolution curves
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Initial stress and pore pressure for all cases: 𝜎 = 4.50 MPa, 𝑝! = 𝑝" = 2.2 MPa

Gas injection pressure Gas outflow



EFFECT OF THE GAS INJECTION RATE: pg and Sr at the end of the simulation (steady state) 
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𝑓! = 1.0×10"# kg/s 𝑓! = 0.50×10"# kg/s 𝑓! = 0.25×10"# kg/s
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FREE CRACKING PATH

14

Very stiff, impervious loading plates

Boom clay sample (linear elastic)

Clay-cell interface (impervious bottom side)
Clay-cell interface (impervious top side)
Back-pressure filter
Potential cracking paths

Gas injection 𝑓" = 1.0×10+, kg/s
 

Initial conditions
Isotropic initial stress state: 𝜎- = 𝜎. = 4.5 MPa
Initial pore pressure 𝑝" = 𝑝! = 2.2 MPa (𝑆! = 1)

Boundary conditions
Isochoric conditions
Gas and water pressure fixed at the sink

Dimensions in mm



FREE CRACKING PATH
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Gas injection

Outlet

𝑆!

Gas injection pressure

Gas outflow



FREE CRACKING PATH
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𝑆!

𝑆!

𝑓! = 1 𝜇g/s

𝑓! = 0.1 𝜇g/s



FREE CRACKING PATH: MESH SENSITIVITY
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Mesh	18s Mesh	24s

Mesh	30s Mesh	24u
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MODELLING RESULTS
“2D” Gas fracturing tests (BGS)
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BGS FRACTURE VISUALIZATION RIG

• Gas fractures developed under approx. plane strain conditions

• Crack propagation can be observed as gas is injected
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Wiseall, Cuss, Graham & Harrington (2015)



MODEL GEOMETRY, FE MESH AND INITIAL CONDITIONS
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GAS FRACTURING SIMULATIONS
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𝑝! [Pa]

Gas injection

Back-pressure



CONCLUSIONS

• The proposed FEM+z approach can simultaneously simulate 
• Diffusion/advection of dissolved gas and two-phase flow both in the continuous porous medium 
and 

• Gas flow along/across macroscopic cracks induced and propagated by the gas pressure.

• Self-sealing is achieved automatically when the induced cracks close as the gas pressure is reduced.

• Experimental observations are qualitatively reproduced by the model.

• The explicit representation of discontinuities (e.g., fractures, joints, faults, material interfaces, etc.) 
allows a more detailed study of the effect of these features in the overall pneumo-hydro-
mechanical behaviour of the clay barriers. 
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REMARK

Dialogue between experimentalists and modellers is crucial to better understand the observed 
behaviour and the impact of testing equipment and protocols… especially when dealing with 
gas!

• Realistic representation of clay-experimental device interfaces and boundary conditions is 
important as these may have a significant influence on the results.

• In addition to the gas injection, simulation of the initial conditioning of the sample, as well as the 
dismantling process may be necessary to explain experimental observations.
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